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For the proportional hazards model of survival analysis, an

appropriate large sample theory is developed for cases of staggered

entry and sequential analysis. The principal techniques involve an

approximation of the score process by a suitable martingale and a

random rescaling of time based on the observed Fisher information. As

a result we show that the maximum partial likelihood estimator behaves

asymptotically like Brownian motion..-
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SEQUENTIAL ANALYSIS OF THE PROPORTIONAL HAZARDS MODEL

T. Sellke and D. Siegmund
Stanford University

1. Introduction

The proportional hazards model of survival analysis and its analysis

by the method of partial likelihood originate in the Yvrk of Cox (1972,

1975), who argued that under general conditions maximum partial likelihood

estimators have asymptotically normal distributions very similar to the

asymptotic distributions of ordinary maximum likelihood estimators. Since

then a number of authors have given more systematic discussions of central

limit results for survival analysis. See Gill (1980), Tsiatis (1981a),

and Andersen and Gill (1981).

In this paper we are concerned with related questions in the context

of controlled clinical trials which possess the following two important

features: (a) entry into the trial occurs at different times for different

patients and (b) it seems desirable to observe the data sequentially so

that the trial may be terminated at the earliest possible moment, if large

treatment effects appear to be present. The authors cited above use as

their starting point Cox's observation that the derivative of the log

partial likelihood is a martingale, to which an appropriate martingale

central limit theorem may be applied. However, with sequential observa-

tion and staggered entry, this process is no longer in general a martin-

gale, and the approach breaks down. We shall show that it can be approxi-

mated by a martingale uniformly in time, in order to conclude tat the
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I
process of maximu partial likelihood estimates observed in a certain time

scale behaves like a Brownian otion process.

Previous work on this problem seems to be limited'to a Monte Carlo

study by Gail, DeMets, and Slud (1981), the paper of Tsiatis (1981b),

and a recent manuscript of Slud (1982). Although Slud is concerned with

the special case of testing a simple nul1 hypothesis, there is some over-

lap with our work, which we discuss later.

The results of this paper are not unexpected. However, it is quite

surprising to find their complete justification to be so difficult, parti-

cularly in comparison to proofs of the superficially similar results of

the authors cited above. In this regard it is interesting to note that

Jortes and Whitehead (1979) are willing to accept a cursory justification

for related results, which they regard as almost obvious and propose to

use as a basis for certain sequential tests. For the somewhat related

Gehan test they offer a similar informal argument, but according to Slud

and Wei (1982), their conclusion is incorrect in this case. Our methods

do not provide satisfactory results concerning the joint 4(istribution of

the Gehan statistic, which seems to involve a substantially more difficult

problem. The multivariate case is also more difficult - even in its formu-

lation - and our results here are not yet complete.

2. Notation and Formulation of the Problem

Assume that n patients enter a clinical trial at times Yl, Y2, "'"

Y which may be nonrandom or occur according to an arbitrary point process.ni
Associated with the ith patient is a triple (zi, x, ci), where zi is a

covariate, xi is the survival time following entry into the trial, and ciL

2
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(possibly infinite) is a censoring variable. Thus the Ith person is on

test until time Yi * xici" If xi < Ci he dies while on the test,

and the value of xi  is recorded. Otherwise that observation is censored

and it is known only that xi > ci. At any time t there is in effect a

second censoring variable (t-yi) in the sense that the time on test of

patient i prior to t is x iACiA(t-yi) We shall refer to xi, Cis and

(t-yi)+ as "age' variables - the age of the ith patient at death, at cen-

soring, and at time t respectively.

Our basic stochastic assumptions are that (zi, xis ci), 1-l, 2, ..., n

are independent and identically distributed and are independent of the arri-

vals Yl, ..." Yn. We assume also that the zi are uniformly bounded and

that given zi, xi and ci are conditionally independent with xi having

a cumulative hazard function of the form

(1) dAi (s) W e )(s)ds

for some unknown parameter B and baseline hazard function X.

For some results zi can be a vector; then B is also, and Ozi denotes

the scalar product. For simplicity of presentation we consider explicitly

only the scalar case.

All probabilities and expectations should be considered as conditional,

given Y1 0 Y2 ' "" yn"

It is convenient to introduce the notation

(2) Ni(t,s) - l(yi+x<.t, xiCi, Xi<.) (s .. t)

to indicate that the ith patient arrived and died before time t, that 4e

was uncensored and was of age < s at the time of death. We also define

the set of patients at risk at time t and age s by
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(3) R(t,s) - U: yjS t-s, x iAC~ i (s < t)

With this notation Cox's (1975) log partial likelihood for 0 can be

expressed by

n O z.

(4) kn(ti8) - I I {Bzt Wi - log( ~ts * 3)) NiCt, ds)

Differentiating (4) with respect to 0 gives the score process

Sz
r i ' I ~ts) 3

(5) n (it, 8) z i (t 0z - : }Ni(t, ds)

jeR(t,s)

The maximum partial likelihood estimator of 0 is the solution M tn

of

in (t,s) = 0

Testsi of the hypothesis H0;~8 can be based on Or directly on

in~t~)* The usual Taylor series approximation

(6) 0 + ~t8 ~t8 08 nt 0

indicates that the asymptotic behavior of 0 is intimately associated

with that of In (t,$), which we now consider.

Let T , denote the class of events at time t and age s, i.e.

V iz the a-algebra generated by I{ ), yil~y<tI iIjtl

{Xjj(t-yQASAC)i' Xil{XjjCt.yj)+ASACj, I (C i < tyi)+ ASAXi}'

c i I(cjC <t.yi)+ASAXjlI i-l, 2, ... , n. For each i-1, 2, ... , n, by (2),

(3), and the conditional independence of c i and x,, given zi, as -O
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E(NI(t, s&) - Ni(ts)Ft.)

r P(cijulzi) P(xi c dulz i}"zIftat's)) C~s~s~za] Ptcj>-szij Ptx>ll i) I- o+ ,W

so at least under the additional assumption of continuity of the condi-

tional distributions of ci given zi ,

(7) E{Ni(t,s+A) - Ni(t,s)JIFt 5s  'liR(ts)} (Ai(s+&) - Ai(s) + o (A)

where Ai  is given by (1). It follows from (7) that for any fixed t,

(8) {Ni(t,s) - Ai (t-yi)+AxiAci s), Tt, s

is a martingale in s (cf. Gill, 1980, p. 14 or Lipster and Shiryayev,

1978, p 24S).

Let Ai(t,ds) {icR(ts) A (ds) and

Oz

(9) nt(ts,) 1 z i - O N i (t,du) - Ai(t.du))

jeR(t,u)

It follows from (5) and simple algebra that

!I n~t~to) = tn~to)•

Moreover, the stochastic integral in (9) inherits the martingale property

of (8), so for each fixed t

(10) in (t~s,B), IFts
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is a martingale in s (Gill, 1980, p. 10 or Lipster and Shiryayev, 1978,

p. 268).

This martingale property in s of n(t,s,B) has been the fruitful

starting point for an analysis of the asymptotic normality of Ln(t,8)

n(t,t,$) at one fixed point in time (cf. Gill, 1980, or Andersen and

Gill, 1981). However, it does not provide useful information about the

joint distribution of in (t,B) at different values of t. It is easy

to show by examples that for general entry times the process i.(tm)

is not a martingale in t, and hence it is necessary to uncover some

additional structure before considering central limit theorems.

Let Ni(t) = Ni(t,t) and Ft - Tt't" An argument similar to that

leading to (7) shows that

(11) E{N i (t +A) - Ni (t) IFt }

SlficR(t,(t-yi)+)} {Ai(t-Yi+A) - Ai(t-yi)} + o(A)

Hence, with the notation A.(dt) = li R(t,(t_yi) )) Ai(dt-yi), we see

that

(12) {Ni(t ) -Ai(t), iFt }

is a martingale in t.

Often stochastic integration with respect to the martingale in (12)

preserve$ the martingale property (cf. Lipster and Shiryayev, 1978. p. 268).

Mor precisely for our purposes we have

Lem 1. Assume hi(s) is bounded, Fs-measurable, and left continu-

ous in s. Then
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{[Ot] hi (s) {Ni(ds) - Ai(ds), F t )

is a martingale in t.

By a change of variable in (9)

Szj

(13) Io (t,)= . Jn i" {N (du)" Aidu)n =l J[Oltl .1 e0~ i

JeR(t,u-y i )

Although (13) is a stochastic integral, Lema I does not apply because the

integrands are not F -measurable and they depend on t. However, an
U"

informal law of large numbers argument suggests that these integrands are

approximately

E(z eZ; X^AC
1 > u-yi

1z E(e ; x IAC, 2> u-y) }(yj<u)

which does not depend on t; and according to Lema 1

n r E(zI e 1 ; x1 AC 1 >u-yi) I
(14) 1m t u - Ai(du)}

n ( -E(e z 1  xC-y
i )

i t -1i e Z x 1 - " {N-(t-ds) - Ai(tds))
f(O'tj E(e I ; xC 1 > s)

is a martingale in t.

In broad outline the goals of the rest of this paper are to show that

the martingale in (14) is a good approximation to the score process (13)

uniformly in t as n-m (Theorem I), and to apply a martingale central

limit theorem to show that (14) (and hence (13)) suitably rescaled behave

7
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like a Brownian notion process asymptotically as n-w (Theorem 2). Finally

the asymptotic behavior of 9 is related to that of in(t,B) via (6) and a

consistency argument (Theorem 3).

Before proceeding with the technical developments to follow, we make

some remarks related to the asymptotic rescaling of the martingale (14).

In order that (14) behave asymptotically like a Brownian motion process

it is important that its "quadratic variation" or its "predictable quad-

ratic variation" grow approximately linearly in t. (See Meyer, 1976,

p. 267 for the definition of these terms in general and (33) for the

special case of (14).) For (14) this linear growth does not occur in

the time scale t, and it is convenient to introduce a data dependent

transformation of time to obtain the desired linearity. From a statistical

point of view the natural mechanism to effect this change of time is the

observed Fisher information or minus the second derivative of the log

(partial) likelihood, - (t.B), which will be shown to be essentially the

sae as the quadratic variation of (14). Hence, for v > 0 let

(15) TnCv,0) = inf{t: 4 n(tB) i vn.

Theorem 2 of Section 4 asserts that

(16) n "  1n(n(v,B), B) "2 W(v)

where W is a standard Brownian notion. Of course, in practice one must
actually use the observable quantity Tn (v,) to define the time scale.

See Graubsch (1982) or Lai and Siegmd (1982) for discussions of the use

of Fisher information as a means of rescaling time.

It is worth noting that such of the preceding discussion generalizes

immediately to several dimensions. However, the rescaling of time indicated
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by (15) and (16) carries over directly only if all elements of the matrixI

-t~ tB)have the same growth rates in t for large n. Except when

$-0 this is typically not the case.

We now turn to a detailed analysis of the approximation of (5) by

(14). A more thorough discussion of (16) is contained in Section 4.

3. Approximation of I n(tB) by the Martingale (14),.

Theorem 1. Let R.,(t) denote the difference between the martingale

in (14) and 9.n (t,B) given by (5) or equivalently by (9) with s=t. Then

for arbitrary e > 0, as n-

Pf sup JRn~t)l > cn'} -* 0

0<t<OD

The proof of Theorem 1 is a consequence of the following three lemmas.

It will be convenient to use the notation:

I ~z. 

(17) ii(t,s) =jcR(t,s) 3 O (s <t)

jER (t, s)

a nd 
E ( z Ie ;z x A C 1  s )

(18) 14(s) - E e C S

In (17) and (18) we interpret 0/0 as 0. With this notation

(19) %~ (t) - I I {1i(t,s)-i(s)){N .(t,ds) -Ai(t,ds))

9



Lonnaa2. Uniformly in 0 <t <

n RCt) - O~log n)

Proof. From fundamental piroperties of stochastic integrals

E R;t) = E~ fii(t,s)-ii(S)1 N.(t,ds))

By considering the i th term and conditioning on xi, R(tx.i), and the

event fxi. < c.iA(t-yi) II, we obtain

(20) E R2;(t) = E(j N .(t,xi) E(f(txi)-j(x)) x R'txi', i - i)A

N (t, xi) Ozj

< const. E(X 1 Ej(U 0 (x) z je
~ (tz 1)x jeR(,x i)

- 11(x1 ) e1 zj2xi R(t,x .), x1 <S CiA(t-yi)])

where U (S) = E(z' e z1 JjACl > S) for V=O and 1, and JAI denotes the
V*

cardinality of the set A. Let R*(t,s) =R(t,s) -{i), and observe that

given x., x.j <c.A(t-yi) , and R*t =i {r' . *., are

independent and identically distributed with

E~zV eSzji xi R (t,x~) Xi.:SCiA(t-yi) + PV~i,(xl)

for v=0 or 1. Hence except for the terms involving i, the conditional

expectations on the right hand side of (20) involve the square of a sun of

i.i.d. random variables having mean 0. Hence

10



2 (t_,s const.E( Ni (t, X + dictxi)

-i l i I (t xi )1

- E([Oflog } Ni(t,t))I - 0(log n)

uniformly in t.

Lemma 3. Let 0 < c < 1/10 and 0 -t 0 < t1 < ... < tn -

Then P{ max IRn(tk)I > n l(1C)i - O(n"2C log n).
l<k<n 

1 - $C

The proof of Lemma 3 is an immediate consequence of Lemma 2 and Chebyshev's

inequality. It remains to make a specific choice of the points {tkl and

show that RnCt) cannot change too rapidly between these points.n

Let Dk = fiJ[t - t) Ni(tkds-yi) denote the number of deaths observed

during [tkl,tk) and let

H f ACt k , ds-y i)

denote the associated accumulated hazard. We choose the partition ftk, k-0,

1, ...,n I so that for all k

(21) E Dk < 2n5 .

Lemma 3 above and Lenma 4 below complete the proof of Theorem 1.

Lemma 4. Kmax max IRn (t)-R Ct.) > n ( C)i * 0 as nTr-.
k tk l<_t<tk

Proof. Note that if S(p) is a Bernoulli variable with parameter p,

then for p < 1, S(p) is stochastically smaller than a Poisson variable

with parameter 2p, say ?(2p). Hence for all 0 < p < 1, 1(p) is stochas-

tically smaller than 2p + ?C2p). Since Dk is a sum of independent

11



Bernoulli variables, it follows from (21) that Dk  is stochastically

smaller than 4n 3  + ?(4n
3C). Hence by easy large deviation estimates

(22) P{max Dk>n 7 /21 , (nn2)

k

On Hk > n4e) Dk is stochastically larger than a Poisson random variable

of mean n4c and hence P(Dk< n7c/2, Hk > n
4  < P?(n4e ) n7c/2, 0(n-l).

From this and (22) it follows that

(23) P(ax Hk > n4 ) -, 0 (n.-)
k

Let tk_ < tk  By (19)

(24) Rn(t)-Rn~tkl) = f{D(t,s)-p(s)){N(t,ds)-A(t,ds)I
[t_ ,t]

+ { tk-)f(t,s)-p(s)){N(t,ds)-A(t,ds)-N (tk-l ds)*A(tk_,,ds))

+ ~( f[ tk- ) { (t s) -D(tk .  s)' )N (tk .1 ds) -A (tk .1 ds) )

where we have used the notation

N~t,ds) • Ni~t,ds), A~t,ds) i Ait'ds)"

Byasupio he ae onddan ecei~ts adu~)ar oudd

Since N(tds) - N(tk 1 1ds) and A(t,ds) - A(tk lds) are both positive

and increasing in t, it follows that the first two terms on the right

hand side of (24) are of order DkH k  uniformly in tk 1 .t < tk. Hence

by (22) and (23) it suffices to consider the third integral in (24). Let

12



(2S) m(ts) - j~ftts)

and observe that

(26) A(t,ds) - m(ts) X(s)ds

Letting 8/2 denote a bound on the z,, we find from (17) and some algebra

that uniformly in tk.l1  t ' tk

(27) ID(t,s)-D(tk l,s)I < m{(tk,s)-m(tkl,S)T/u(tkS)

Hence by (24) and (27) it suffices to show

(28) P(Nax J [(m(tkls)-(tk-l-s))/(tks)] N(tk-l ds) > n *-)I * 0
k 10,tk_)

and

(29) P(max ({m~tk's)'m(tk-l's)1/u(tk'S)) A~tk-l'dS) > njj(l"€)) .0.

k [h0tk_1)

From (26) and some algebra we see that the random variable in (29) is major-

ized by max H k, so (29) follows from (23).
k

Now consider (28). It is easily seen by direct calculation that

Lk(s) - J ({m(tkU) - m(tk lu))/(tku)] N(tk.1 ,du)

- (N(tk,s) - N(tk-l'S)1

is a supermartingale for 0 < s < ti. , which changes by Jumps downward of

size I and upward of size at most equal to 1. Furthermore, N(tkotkl)

- N(tk-lstk.l) < Dk, so by (22), to prove (28) it suffices to show

13



,

(30) P{mM Lk(tk_) > n 4 0.
k

Let So -0, and for Jul, 2, ... let

S. - inf(s: s > sj. Lk(s) - Lk(Sj 1) .> 1 or < 0)

where it is understood that inf 4 - tk.* . Obviously -1 < Lk(S j) -Lk(Sj_ )

< 2, and from the supermartingale property we see that on {Sj. 1 < tk.1}

E(Lk(Sj) - Lk(Sjl)l~tk' SJ- 1) < 0,

and hence

(31) P{Sj < tkl Lk(Sj) - Lk(Sj.l ) > ltkS ) < 1/2

It follows from (31) that between downward jumps the total increase of

Lk(s) is stochastically smaller than l y, where P{yum) - (1/2)

m-0, 1, ... . .Since the total number of downward jumps is Dk, an easy

large deviation estimate gives

4c702 -1
P{Lk(tk_ ) .n

4  Dk  
2n I o(n" )

Hence by (22)

,,na. c:k_. , >,4e < p D n 7'/U D <2,, 7,/2
kfa~~tl + jtmas.-1) nn

k k k

"0 as n.w.

4. Convergence to Brownian Motion

In this section we give a precise interpretation of (16) and indicate

its proof. Let Q%(t,0) denote the martingale in (14), which in the nota-

tion of Section 3 can be written

14



(32 Qn ~.) (:1 - jsi )) (Ni(ds) -Ai(ds))

4 Jrtl

I J (zI - p(s)) (Ni(tds) - Ai(t,ds))

It follows from the first representation of in (32) and the independence of the

different terms that the predictable quadratic variation of the Martingale Q. is

(33) {z J0,t i -(s'Yi)2 ( i "[0,tj (zi'U(')]2 A i (tds)

Bz1 rXl^Cl

Let vf= E[e J0 {zl-i(s)1 2X(s)ds]  and note that by the law of large

numbers

nV , -()2 Ai(-,ds)- v.

in probability. Hence for 0 < v < vf and Tn(vB) defined by

Tn(vB) a inf{t: n-1 I  J (zi-UCs)) 2 Ai(tds) )

we have P{T(v,B) < I} and

(34) n-l11 (zi' )2 Ai(t, ds) v

i [0,Tm(v,B)]

in probability. It follows from (34) and the form of the martingale central

limit theorem given by Rebolledo (1980, p. 273, Proposition 1) that for

every 0 < v < v
O~v~vf

(35) n JO€., B) ()

on [O,v) as n-m, where V is a standard Browian notion.

is



This result is unsatisfactory for statistical purp'..es because (33)

is not an observable random variable - even under a simple null hypothesis,

when B is assumed to be known. Consider now

(36) -n (tB) " i (ts) N(t,ds)

where

a e (ts) = (Z - 0ts/ e JjeR(t .s) (zBJjER(t,s)

and let Tn(v,0) be defined by (15).

Theorem 2. For each 0 < v < vf.,

P{Tn (v.8) < * 1

and on (O,v]

(37) W(.)

where W(.) is standard Brownian motion.

The key tools in the proof of Theorem 2 are Theorem 1, which shows

that it suffices to prove (37) with Qn in place of In' and Lemma 5

below, which shows that (34)holds with tR in place of Tn , so the mar-

tingale central limit theorem applies to yield (35) with Tn in place

of Tn -

Lemia S. For small positive e, as n-m

(38) *+m '. {,( s))2 Ai(t,ds)l> nl'C * 0

Proof. The proof is similar to Theorem 1, so we give only a general

outline. Observe that

16



(39) n(t 0 ) + E '[0t] (zi-jJ(s)} 2Ai(t'ds)

[Ol (t s)'1(s) A(t'ds)-I[0,t] a2 (s){N(t,ds)-A(t,ds))

[OJ {;2(ts)-02(s)1{N(t,ds)-A(t,ds)}
[0,t]

where

a 2(s) =E[{Zl-U(s)} 2• O ; X ^Cl>S]/E(e z ; XlACl>S

Each of the terms on the right hand side of (39) can be estimated by techniques

similar to the proof of Theorem 1. For example, the third integral can be

split into a part involving a difference of second moments and a part involving

a difference of squares of first moments. The second moment piece is treated

directly by the techniques of Theorem 1; for the first moment piece we use

a2 - b2 a (a+b)(a-b) and the boundedness of (a+b) in order to apply the

techniques of Theorem 1.

S. Discussion

In order to turn Theorem 2 into a statistically interesting result,

one must (a) relate the behavior of the partial likelihood function given

in (37) to that of the maxinm partial likelihood estimator defined

by in(t, ) - 0, and (b) replace 0 by I in (15), so that the desired

renormalization of time is accomplished by observable random variables.

This yields the main result of the paper.

17I



Theorem 3. Let 0 < v < vf and

(ncv) - inf[t: -*1 ft, 8(t)) > v]

For O<v.<v <Vf as nm

f2

(40) (-)n[Anfn'- 0] W(.)

or equivalently

(41) -n" t[r(.), (°)p ] [ - 8] + W(')

on Iv*, v*].

We have omitted the proof of this theorem. Basically one combines

the results of Sections 3 and 4 with some Taylor series expansions to

prove the consistency of 1, and then uses this consistency, (6), and

Theorem 2 to prove Theorem 3.

A consequence of Theorem 3 is that in the time scale determined by

"rns On can be approximated by a Brownian motion process for the purpose

of sequentially testing statistical hypotheses about B or for estimating

R. Thus if we would be satisfied with a repeated significance test or a

truncated sequential probability ratio test for testing a hypothesis about

the drift of a Brownian notion process, we can obtain an analogous asyp-

totic test for B.

Since na W(v) and W(nv), 0 < v < have the sam joint distrtbu-

tiass, it is tempting to rewrite (40) as

(42) nv[Bn{n(V)) - 0] W(nv) for nv* < nv < nv*

and treat nv u' as one variable. A loose inteTretation of (42) would

be that

is



( C1 W - k -(t) -)

behaves approximutely like

i';(44) V[-_,n{t' ln~t)) ]

provided A n - -tn(t 14(t)) is "large". Of course, th theore c

ies that nelar re" thats proportional to n with constants of proportion-

ality bounded away from 0 and from v ov

practice inf probably n necessat interpret t ipbal

informtion requirementinenly. In fact, close scrutiny of the proof

of Theorem 2 shows that n in (h) could be replaced by nie for suit-

able small positive o and then the normalizing nb in (37) would becole

Hence the approximation of (43) by (44) is valid for values of

- of smaller order of magnitude than n, but we do not know how much

smaller. de conjecture that with a proper reformulation it is possible

to give an interpretation to the approximation of (43) by (44) provided

only that -1, is large.

The maximum information requirement that An<< nv f is probably

more importat and could conceivably cause some difficulty in practice,

since v f is essentially never known. However, if the patient arrival

rate is sufficiently great and the experimental period compartively short

so that some reasonable percentage of the total number put on test is still

alive at the end of the experiment, ao problems should arise.

!i It seem desirable to conduct a, Monte Carlo experiment to got some

feeling for the practical limitations of Theorem 3. For the related prob-

lem of testing the null hypothesis 8-0, Gail, Del~ets, and Slud (1981)
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conclude that the score statistic under the null hypothesis is reasonably

approximated by a Brownian motion. Their time renormalization is not

appropriate for general 0, however.

Slud's (1982) theoretical approach is superficially similar to ours

in that he introduces a martingale to approximate the score process of

the partial likelihood. His martingale is different from ours (although

it is a special case of the class of martingales described by Lemma 1).

He considers only the null hypothesis 0=0 and uses a time renormalization

which would be inappropriate for general 0. Also what corresponds to our

Lemma 4 is essentially his assumption A.5. This assumption is never

actually verified although Slud states that it oan be verified wider vari-

ous sets of conditions, all of which require strong hypotheses on the

arrival process.

It is not obvious how one should generalize these results to multi-

dimensional 8. Except when S=0, one cannot expect that the information

about the various coordinates of 8 accumulate at the saw ratc, and hence

one cannot generalize (15) directly. In the case where one coordinate of

8 is a treatment indicator, it seems possible to study this one coordinate

sequentially by making a time change in terms of the residual variance of

its regression on the other coordinates. We hope to discuss this problem

in a future publication.
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